首页> 外文OA文献 >Regolith Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication
【2h】

Regolith Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

机译:Regolith衍生的隔热板,用于原位制造的行星体进入和下降系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This NIAC project investigated an innovative approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. Such in situ developed heat shields have been suggested before by Lewis. Prior research efforts have shown that regolith properties can be compatible with very-high temperature resistance. Our project team is highly experienced in regolith processing and thermal protection systems (TPS). Routine access to space and return from any planetary surface requires dealing with heat loads experienced by the spacecraft during reentry. Our team addresses some of the key issues with the EDL of human-scale missions through a highly innovative investigation of heat shields that can be fabricated in space by using local resources on asteroids and moons. Most space missions are one-way trips, dedicated to placing an asset in space for economical or scientific gain. However, for human missions, a very-reliable heat-shield system is necessary to protect the crew from the intense heat experienced at very high entry velocities of approximately 11 km/s at approximately Mach 33 (Apollo). For a human mission to Mars, the return problem is even more difficult, with predicted velocities of up to 14 km/s, at approximately Mach 42 at the Earth-atmosphere entry. In addition to human return, it is very likely that future space-travel architecture will include returning cargo to the Earth, either for scientific purposes or for commercial reasons. Platinum, titanium, helium 3, and other metals, elements and minerals are all high-value commodities in limited supply on Earth, and it may be profitable to mine these substances throughout the Solar System and return them to Earth, if an economical method can be found. To date, several private corporations have been launched to pursue these goals. Because the heat shield is the last element to be used in an Earth-return mission, a high penalty is paid in the propellant mass required to carry the heat shield to the destination and back. If the heat shield could be manufactured in space, and then outfitted on the spacecraft prior to the reentry at Earth, then significant propellant and mass savings could be achieved during launch and space operations. Preliminary mission architecture scenarios are described, which explain the potential benefits that may be derived from using an in-situ fabricated regolith heat shield. In order to prove that this is a feasible technology concept, this project successfully fabricated heat shield materials from mineral simulant materials of lunar and Martian regolith by two methods: 1) Sintering and 2) Binding the simulant with a "room-temperature vulcanizing" (RTV) silicone formulated to withstand high temperatures. Initially a third type of fabrication was planned using the hot waste stream from regolith ISRU processes. This fabrication method was discarded since the resulting samples would be too dense and brittle for heat shields. High temperature flame tests at KSC and subsequent arc jet tests at Ames Research Center (ARC) have proved promising. These coupon tests show favorable materials properties and have the potential to be a new way of fabricating heat shields for space entry into planetary atmospheres.
机译:该NIAC项目研究了一种创新方法,该方法可在航天器发射后和每个EDL之前为航天器提供隔热罩,从而有可能显着节省发射质量。原位制造的隔热罩可以为通常进入行星大气的航天器提供热保护系统。通过利用卫星和小行星上可用材料的空间资源来制造隔热板,可以避免从地球发射隔热板块。 Regolith具有极好的绝缘性能,其所含的硅酸盐可用于热保护材料的制造和成型。这样的原位开发的隔热罩是路易斯以前提出的。先前的研究工作表明,硬石膏的性能可以与极高的耐热性兼容。我们的项目团队在碎石处理和热防护系统(TPS)方面经验丰富。常规进入太空并从任何行星表面返回时,需要处理航天器在重返过程中承受的热负荷。我们的团队通过对隔热屏的高度创新研究来解决人类规模任务的EDL的一些关键问题,这些隔热屏可以利用小行星和卫星上的本地资源在太空中制造。大多数太空任务都是单程旅行,致力于将资产投入太空以获得经济或科学收益。但是,对于人类任务,必须有一个非常可靠的隔热罩系统,以保护机组人员免受以大约33马赫(阿波罗)的高入口速度(约11 km / s)经受的强烈热量的伤害。对于人类执行的火星任务而言,返回问题更加困难,在地球大气层入口处的预计速度约为14马赫时,速度预计可达14 km / s。除了人类返回之外,出于科学目的或出于商业原因,未来的太空旅行体系很可能还会包括将货物返回地球。铂,钛,氦3以及其他金属,元素和矿物质都是地球上供应有限的高价值商品,如果经济可行的话,在整个太阳系中开采这些物质并将其返回地球可能会有利可图。被发现。迄今为止,已经成立了几家私营公司来追求这些目标。由于隔热罩是回地球任务中使用的最后一个元件,因此携带隔热罩到达目的地并返回目的地所需的推进剂质量要付出高昂的代价。如果可以在太空中制造隔热罩,然后在重新进入地球之前将其安装在航天器上,则可以在发射和太空操作期间实现大量的推进剂和质量节省。介绍了初步的任务架构方案,这些方案说明了使用原位制造的Regolith隔热板可能带来的潜在好处。为了证明这是一个可行的技术概念,该项目通过以下两种方法成功地从月球和火星重矿物的矿物模拟材料中制造了隔热材料:1)烧结和2)将模拟物与“室温硫化”结合在一起( RTV)耐高温硅酮。最初计划使用来自regolith ISRU工艺的热废料流进行第三种制造。放弃这种制造方法,因为所得到的样品对于隔热板而言将太稠密和易碎。事实证明,在KSC进行的高温火焰测试以及随后在Ames研究中心(ARC)进行的电弧喷射测试都是有希望的。这些试样测试显示出有利的材料性能,并有可能成为制造用于进入行星大气的空间的隔热板的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号